Evaluating Algebraic Expressions

- 1. Substitute the given values for the variables in the expression
- 2. Evaluate the expression using the order of operations
 - Parentheses/Brackets (inside to outside)
 - Exponents
 - Multiplication/Division (left to right)
 - Addition/Subtraction (left to right)

ex:
$$9x^{2} - 4(y + 3z)$$

for $x = -3$, $y = 2$, $z = 5$
 $9(-3)^{2} - 4(2 + 3 \cdot 5)$
 $9(-3)^{2} - 4(2 + 15)$
 $9(-3)^{2} - 4 \cdot 17$
 $9 \cdot 9 - 4 \cdot 17$
 $81 - 68 = \boxed{13}$

The Distributive Property

- 1. Multiply the number outside the parentheses by each term in the parentheses.
- 2. Keep the addition/subtraction sign between each term.

ex:
$$5(8x - 3)$$

 $5(8x - 3)$
 $5(8x) - 5(3)$
 $40x - 15$

Simplifying Algebraic Expressions

- 1. Clear any parentheses using the Distributive Property
- 2. Add or subtract like terms (use the sign in front of each term to determine whether to add or subtract)

ex:
$$2(3x - 4) - 12x + 9$$

$$2(3x - 4) - 12x + 9$$

$$6x - 8 - 12x + 9$$

Evaluate each expression for a = 9, b = -3, c = -2, d = 7. Show your work.

1. a - cd	2. 2b ³ + c ²	3. <u>a + d - c</u> b	4. (a - b) ² + d(a + c)
5. 4c – (b – a)	6. a/b - 5a	7. 2bc + d(12 – 5)	8. b + 0.5[8 - (2c + a)]

Simplify each expression using the Distributive Property.

9. 5(2g – 8)	10. 7(y + 3)	113(4w — 3)	12. (6r + 3)2

Simplify each expression, showing all work.

13. δ(x + I) — I2x	14. 6w – 7 + 12w – 3z	15. 9n – 8 + 3(2n – 11)	16. 3(7x + 4y) – 2(2x + y)	
(JE 6-1)/ E) OU J	10 ath 1) - 0b	Id 000 11/FC 11) 1/	00 (1 1) 1 (1 5)	
17. (15 + 8d)(-5) — 24d + d	18. $9(b-1)-c+3b+c$	19. 20f – 4(5f + 4) + 16	20.8(h - 4) - h - (h + 7)	

Solving One-Step Equations

- I. Cancel out the number on the same side of the equal sign as the variable using inverse operations (addition/subtraction; multiplication/division)
- 2. Be sure to do the same thing to both sides of the equation!

ex:
$$-18 = 6j$$

 $\frac{-18 = 6j}{6}$
 $-3 = j \longrightarrow j = -3$

Solving Two-Step Equations

- Undo operations one at a time with inverse operations, using the order of operations in reverse (i.e. undo addition/subtraction before multiplication/division)
- 2. Be sure to always do the same thing to both sides of the equation!

ex:
$$\frac{a}{7} - 12 = -9$$

$$\frac{a}{7} - 12 = -9$$

$$\frac{a}{7} + 12 + 12$$

$$\frac{a}{7} = 3 \times 7$$

$$a = 21$$

Solving Multi-Step Equations

- 1. Clear any parentheses using the Distributive Property
- 2. Combine like terms on each side of the equal sign
- 3. Get the variable terms on the same side of the equation by adding/subtracting a variable term to/from both sides of the equation to cancel it out on one side
- 4. The equation is now a two-step equation, so finish solving it as described above

ex:
$$5(2x - 1) = 3x + 4x - 1$$

 $10x - 5 = 3x + 4x - 1$
 $10x - 5 = 7x - 1$
 $-7x - 7x$
 $3x - 5 = -1$
 $+5 + 5$
 $3x = 4$
 $3x = 4$
 $3x = 4$

Solve each equation, showing all work.

Solve each equation, sh	1	<u> </u>	
21. f - 64 = -23	227 = 2d	$\frac{b}{-12} = -6$	24. 13 = m + 21
25. $5x - 3 = -28$	$26. \frac{\omega + 8}{-3} = -9$	27. $-8 + \frac{h}{4} = 13$	28. 22 = 6y + 7
29. 8x - 4 = 3x + 1	30. $-2(5d - 8) = 20$	31. 7r + 21 = 49r	329g - 3 = -3(3g + 2)
33. $5(3x - 2) = 5(4x + 1)$	34. $3d - 4 + d = 8d - (-12)$	35. f - 6 = -2f + 3(f - 2)	36. $-2(y-1) = 4y - (y+2)$

Slope & Rate of Change

<u>Finding the Slope Given Two Points</u>: Use the coordinates from the points in the slope formula:

Slope (m) =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

<u>Finding the Rate of Change From a Table</u>: Determine the amount the dependent variable (y) is changing and the amount the independent variable (x) is changing.

Rate of Change =
$$\frac{\text{change in y}}{\text{change in x}}$$

<u>Finding the Slope From a Graph</u>: Choose 2 points on the graph. Find the vertical change (rise) and horizontal change (run) between the 2 points and write it as a fraction $\frac{\text{rise}}{\text{run}}$. (Up is positive, down is negative, right is positive, and left is negative).

ex:
$$(4, -2)$$
, $(-3, 8)$

$$m = \frac{8 - (-2)}{-3 - 4} = \frac{10}{-7} = -\frac{10}{7}$$

$$m = \frac{50}{2} = 25 \text{ dollars/month}$$

Graphing Linear Equations

Slope-Intercept Form:
$$y = mx + b$$

slope y-intercept

How To Graph:

- Make a point on the y-axis at the y-intercept.
- 2. Use the slope to determine where to make the next point. The numerator tells you the rise (how far up/down) and the denominator tells you the run (how far right/left) to make the next point.
- 3. Repeat to make more points and then connect the points with a line.

ex:
$$y = 2x - 4$$

y-intercept: -4

slope:
$$2 = \frac{2}{1} \leftarrow \text{rise}$$

Find the slope of the line that passes through the points. Show your work.

61. (-5, 3), (2, 1)

62. (8, 4), (11, 6)

63. (9, 3), (9, -1)

64. (-4, -2), (-6, 4)

Find the rate of change. Show your work.

65.

Number of Hours	3	6	9	12
Distance (in miles)	135	270	405	540

66.

Number of Weeks	1	3	5	7
Pounds	173	169	165	161

Find the slope of the line.

67.

69.

Graph the line.

70. y = -x - 3

71.
$$y = \frac{1}{3}x + 2$$

72. y = -3x - 1

$$y = -\frac{3}{2}x - 2$$

74. y = 2x + 1

$$y = \frac{1}{4}x$$

